coin-anim
image image image image image image
Abstract. Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn conditions and new analytical tools, presented an opportunity to evaluate factors influencing fire severity under burning conditions representative of those where management of wildfire for resource benefit is most likely. Fire severity was estimated as the percent change in canopy cover (0–100%) classified from the Relativized differenced Normalized Burn Ratio (RdNBR), and spatial data layers were compiled to determine strength of associations with topography, weather, and variables directly or indirectly linked to fuels, such as vegetation type, number of previous fires, and time since last fire. Detailed fire progressions were used to estimate weather (e.g., temperature, relative humidity, temperature inversions, and solar radiation) at the time of burning. A generalized additive regression model with random effects and an additional spatial term to account for autocorrelation between adjacent locations was fitted to fire severity. In this fire year characterized by the relative absence of extreme fire weather, topographical complexity most strongly influenced severity. Upper- and mid-slopes tended to burn at higher fire severity than lower-slopes. East- and southeast-facing aspects tended to burn at higher severity than other aspects. Vegetation type and fire history were also important predictors of fire severity. Shrub vegetation was more likely to burn at higher severity than mixed hardwood/conifer or hardwood vegetation. As expected, fire severity was positively associated with time since previous fire, but the relationship was non-linear. Of the weather variables analyzed, temperature inversions, common in the complex topography of the Klamath Mountains, showed the strongest association with fire severity. Inversions trapped smoke and had a dampening effect on severity within the landscape underneath the inversion. Understanding the spatial controls on mixed-severity fires allows managers to better plan for future wildfires and aide in the decision making when managing lightning ignitions for resource benefit might be appropriate.

Abstract

Topography, weather, and fuels are known factors driving fire behavior, but the degree towhich each contributes to the spatial pattern of fire severity under different conditions remains poorlyunderstood. The variability in severity within the boundaries of the 2006 wildfires that burned in theKlamath Mountains, northern California, along with data on burn conditions and new analytical tools, presentedan opportunity to evaluate factors influencing fire severity under burning conditions representativeof those where management of wildfire for resource benefit is most likely. Fire severity was estimated asthe percent change in canopy cover (0–100%) classified from the Relativized differenced Normalized BurnRatio (RdNBR), and spatial data layers were compiled to determine strength of associations with topography,weather, and variables directly or indirectly linked to fuels, such as vegetation type, number of previousfires, and time since last fire. Detailed fire progressions were used to estimate weather (e.g.,temperature, relative humidity, temperature inversions, and solar radiation) at the time of burning. A generalizedadditive regression model with random effects and an additional spatial term to account for autocorrelationbetween adjacent locations was fitted to fire severity. In this fire year characterized by therelative absence of extreme fire weather, topographical complexity most strongly influenced severity.

 

From Out of the Abyss...

This week’s article from the past is titled Incendiary Fires Can Be Spotted and was written by Benjamin Horton, CPCU, who was President of the National Adjuster Traing School in Louisville, Kentucky..  It is taken from the Decembe 1968 Vol. XVI No.5 issue.

Incendiary Fires Can Be Spotted 

In the new issue of NFPA Journal®, President Jim Shannon said the Association will focus on the leading causes of home fires, including cooking. "We also need to continue to push hard for home fire sprinklers. That's still a large priority for NFPA, and we plan to work very aggressively in 2014 on our residential sprinkler initiative," he said.

Read more...

White Paper

Study by: Albert Simeoni, Zachary C. Owens, Erik W. Christiansen, Abid KemalExponent, Inc. USAMichael Gallagher, Kenneth L. Clark, Nicholas SkowronskiNorthern Research Station, USDA Forest Service, USAEric V. Mueller, Jan C. Thomas, Simon Santamaria, Rory M. HaddenSchool of Engineering, University of Edinburgh, UK

Albert Simeoni, Zachary C. Owens, Erik W. Christiansen, Abid Kemal Exponent, Inc. USA Michael Gallagher, Kenneth L. Clark, Nicholas Skowronski Northern Research Station, USDA Forest Service, USA Eric V. Mueller, Jan C. Thomas, Simon Santamaria, Rory M. Hadden School of Engineering, University of Edinburgh, UK

ABSTRACT

Two experimental fires, with contrasting intensities, were conducted in March 2016, in the Pinelands National Reserve (PNR) of New Jersey, United States in order to provide a preliminary assessment of the reliability of the fire direction indicators used in wildland fire investigation.  The experiments were part of a larger project intended to measure firebrand production in a forested ecosystem.  As part of this project, fire behavior, as well as the environmental and fuel conditions were also measured.  Two burn parcels, covering an area of approximately 30 hectares each, were ignited from unimproved forest roads which delimited them.  The forest canopy was comprised primarily of pitch pine with intermittent oaks.  The understory contained a mixed shrub layer of huckleberry, blueberry, and scrub oaks. In order to explore a wide range of indicators, objects such as bottles, cans and small fence elements were planted in the burn area, and photographed before and after the fire.  To obtain an accurate measure of pre- and post-fire fuel properties, fuel load, fuel bulk density, and fuel moisture content were also measured. In addition, environmental data (wind velocity and direction, air temperature and humidity) were recorded.  The fire behavior can be reconstructed using measurements of fire rate of spread, fire front temperatures, fire front geometry, and heat fluxes.  Video and infrared cameras were used to document the general fire behavior in selected locations.  This paper represents the first step in the analysis of the fire indicators and focuses on the more intense of the two burns and on the appearance of the macro- and microscale fire pattern indicators.  A majority of the indicators were assessed, although the configuration of the burn parcels, the ignition technique, and precipitation immediately following the fires limited a full study.  The results show that some fire direction indicators are highly dependent on local fire conditions and fire behavior and may be in contradiction with the general spread of the fire.  Overall, this study demonstrates that fire pattern indicators are a useful tool but must be interpreted in the frame of a general analysis of the fire, combined with a good understanding of fire behavior and fire dynamics.

Read more...

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

Read more...

Abstract Candles can enhance décor or be a source of light. However, they can also start fires. National estimates of reported fires derived from the U.S. Fire Administration’s National Fire Incident Reporting System (NFIRS) and NFPA’s annual fire department experience survey show that candles were the heat source in an estimated average of 9,300 reported home fires annually during 2009-2013. These fires caused an average of 86 civilian deaths, 827 civilian injuries and $374 million in direct property damage per year. More than one-third (36%) of home candle fires started in the bedroom. Almost three of every five (58%) fires occurred because the candle was too close to something that could burn. Candle fires are most common around the winter holidays. Candles used for light in the absence of electrical power appear to pose a particular risk of fatal fire. Home candle fires climbed through the 1990s but have fallen since the 2001 peak. ASTM F15.45 has developed a number of standards relating to candle fire safety. Despite the considerable progress made in reducing candle fires, they are still a problem. In 2009-2013, candle fires ranked second among the major causes in injuries per thousand fires and average loss per fire. Efforts to prevent these fires must continue.

Abstract

Candles can enhance décor or be a source of light.  However, they can also start fires.  National estimates of reported fires derived from the U.S. Fire Administration’s National Fire Incident Reporting System (NFIRS) and NFPA’s annual fire department experience survey show that candles were the heat source in an estimated average of 9,300 reported home fires annually during 2009-2013.  These fires caused an average of 86 civilian deaths, 827 civilian injuries and $374 million in direct property damage per year.  More than one-third (36%) of home candle fires started in the bedroom.  Almost three of every five (58%) fires occurred because the candle was too close to something that could burn.  Candle fires are most common around the winter holidays.  Candles used for light in the absence of electrical power appear to pose a particular risk of fatal fire.  Home candle fires climbed through the 1990s but have fallen since the 2001 peak.  ASTM F15.45 has developed a number of standards relating to candle fire safety.  Despite the considerable progress made in reducing candle fires, they are still a problem.  In 2009-2013, candle fires ranked second among the major causes in injuries per thousand fires and average loss per fire.  Efforts to prevent these fires must continue.

Read more...

facebook_imgtwitterbirdlinkedin_image
Member Login         

Need to take Fire Investigation 2A & 2B?  Click here


Check out these recent employment opportunities

Flashing-Arrow-Pointing-RightRegister Today for the November 13-15, 2017 Training Seminar in San Luis Obispo.

Click here to book your rooms at the Embassy Suites today.

Alaska Airlines Passenger's Phone Catches Fire Mid-Flight

iphonefireThis is not a recall (yet).

An Alaska Airlines passenger's phone burst into flames on a flight en route to Hawaii, and the airline and the FAA say they are investigating.

See the news video and full article here.

Home / Recalls / 2016 277 Illume Recalls Valentine’s Day-Themed Ceramic Mugs

Love Today MugDescription

This recall involves 14 ounce, white ceramic coffee mugs with “Love Today” printed in gold metallic on the outside of mug. “Microwave Safe” and “Illume” are printed on a removable label on the bottom of the mug.


Read all the details at CPSC

Toshiba issues big recall for laptop batteries over fire fears

54 models affected.

Toshiba issues big recall for laptop batteries over fire fearsToshiba has issued a recall for Li-Ion battery packs sold with certain models of its laptops and notebooks due a risk of the device catching fire.

Click here to read the article




Fuel Delivery Line Corrosion may Cause Fuel Leak

SUMMARY:

Suzuki Motor of America, Inc. (Suzuki) is recalling certain model year 2013 Suzuki SFV650 motorcycles manufactured March 23, 2013, to April 8, 2013, 2014 Suzuki SFV650 motorcycles manufactured October 24, 2013, to November 26, 2013 and 2015 Suzuki SFV650 motorcycles manufactured August 9, 2014, to September 12, 2014. During assembly of the motorcycle, the fuel tank breather hose may have not been positioned properly and may become kinked. 

CONSEQUENCE:

If the fuel tank breather hose is kinked, pressure may build inside the fuel tank and cause the tank to crack, resulting in a fuel leak, increasing the risk of a fire.

Go to NHTSA for more details

"Burn to Learn"

 

F

E

E

L


T

H

E


B

U

R

N

Save the Dates – – –

 

CCAI will be presenting another in its series of “BURN TO LEARN” training seminars on March 7 through 9, 2016 in San Luis Obispo.  Don’t miss out!

Live burns and various tests will expand your knowledge on a variety of burn patterns so that you may confidently explain them in the courtroom.

Whether you’re just starting to build your CV or just keeping it polished, you need to attend this conference!


or
Sign into the Members only area and sign up and pay there.


In order to get the discounted conference room rate, you MUST make your hotel reservation by the 25th of February.

Call Embassy Suites at 805-547-6417 or 805-549-0800 to make yours TODAY.

More Articles...

Page 3 of 17

3
Banner

Advertise Your Business Here!

 

CCAI Advertisers enjoy unprecedented exposure to professionals in the public and private sector with tens of thousands of targeted visitors each year looking to arson.org for critical information on the state of fire and arson investigation in the United States and worldwide!  

Banner ads should be formatted to 699 x 125 pixels, JPEG or animated GIF or Flash SWF, 100Kb or less. 

Annual advertising rates available.

Join CCAI Today!

Member Benefits:  

~Training in Fire/Arson
   Investigation
~Semi-Annual
  Training Seminars
~Regional Roundtable
  Meetings held
  throughout the State
~Fire Investigative Resources
~Networking between public
  and private agencies:
       Fire, Police, Insurance,
       Private Investigators,
       Attorneys
~Legal Updates
~Certification Development
~Annual Membership Card
~CCAI-CFI Program
~Field Training Exercises
~Videos on
   fire/arson investigations
~Members only area
~Attend Seminars at a
  greatly reduced rate!
~Weekly E-Newsletter
Last month September 2017 Next month
S M T W T F S
week 35 1 2
week 36 3 4 5 6 7 8 9
week 37 10 11 12 13 14 15 16
week 38 17 18 19 20 21 22 23
week 39 24 25 26 27 28 29 30
California Certified Fire Investigator

 

 

 

 

Location

1279 North White Avenue
Pomona, California 91768
Phone:  (909) 865-5004
Fax (909) 865-5024
8:00 am - 5:00 pm
Monday - Friday

Disclaimer

This is the official website of the California Conference of Arson Investigators.

The information published on this website... more... 

 

Login