coin-anim
image image image image image image

Abstract

Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6 mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity-output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17 % more CO2 than flanking and 9.5 % more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.

Read more... 

INTRODUCTION This report describes new full-scale compartment fire experiments, which include local measurements of temperature, heat flux and species composition, and global measurements of heat release rate and mass burning rate. The measurements are unique to the compartment fire literature. By design, the experiments provided a comprehensive and quantitative assessment of major and minor carbonaceous gaseous species and soot at two locations in the upper layer of fire in a full scale ISO 9705 room [1]. Fire protection engineers, fire researchers, regulatory authorities, fire service and law enforcement personnel use fire models (such as the NIST Fire Dynamics Simulator, FDS[2]) for design and analysis of fire safety features in buildings and for post-fire reconstruction and forensic applications. Fire field models have historically showed limited ability to accurately and reliably predict the thermal conditions and chemical species in underventilated compartment fires. Formal validation efforts have shown that for well ventilated compartment fires, with the exception perhaps of soot, field models do quite well in predicting temperature and species when experimental uncertainty is accounted for. Inaccurate predictions of incomplete burning and soot levels impact calculations of radiative heat transfer, burning rates, and estimates of human tenability. High-quality (relatively low, quantified uncertainty) measurements of fire gas species, temperature, and soot from the interior of underventilated compartment fires are needed to guide the development and validation of improved fire field models.

Introduction

This report describes new full-scale compartment fire experiments, which include localmeasurements of temperature, heat flux and species composition, and global measurements ofheat release rate and mass burning rate. The measurements are unique to the compartment fireliterature. By design, the experiments provided a comprehensive and quantitative assessment ofmajor and minor carbonaceous gaseous species and soot at two locations in the upper layer offire in a full scale ISO 9705 room [1].

Fire protection engineers, fire researchers, regulatory authorities, fire service and lawenforcement personnel use fire models (such as the NIST Fire Dynamics Simulator, FDS[2]) fordesign and analysis of fire safety features in buildings and for post-fire reconstruction andforensic applications. Fire field models have historically showed limited ability to accuratelyand reliably predict the thermal conditions and chemical species in underventilated compartmentfires. Formal validation efforts have shown that for well ventilated compartment fires, with theexception perhaps of soot, field models do quite well in predicting temperature and species whenexperimental uncertainty is accounted for. Inaccurate predictions of incomplete burning and sootlevels impact calculations of radiative heat transfer, burning rates, and estimates of humantenability. High-quality (relatively low, quantified uncertainty) measurements of fire gasspecies, temperature, and soot from the interior of underventilated compartment fires are neededto guide the development and validation of improved fire field models.

Read more... 

ABSTRACT The open kitchen design in small residential units where fire load density and occupant load are very high introduces additional fire risk. One big concern is that whether flash-over can occur which may trigger a big post flashover fire, resulting in severe casualties and big property damage. It is important to understand and predict the critical conditions for flashover in this kind of units. Based on a two-layer zone model, the probability of flashover is investigated by a nonlinear dynamical model. The temperature of the smoke layer is taken as the only state variable and the evolution equation is developed in the form of a simplified energy balance equation for the hot smoke layer. Flashover is considered to occur at bifurcation points. Then the influence of the floor dimensions and the radiation feedback coefficient on flashover conditions is examined. When the dimensions of the floor vary, the resulting changes in internal surface area or size of floor area both have effect on the flashover conditions. When the radiation feedback coefficient is of small value, there is no possibility of flashover. With the increase of the radiation feedback coefficient, at first it significantly affects the conditions for flashover and then moderately when it reaches a larger value. It is proved that the flashover phenomenon can be demonstrated well by nonlinear dynamical system and it helps to understand the effect of various control parameters.

Abstract

The open kitchen design in small residential units where fire load density and occupant load are very high introduces additional fire risk. One big concern is that whether flash-over can occur which may trigger a big post flashover fire, resulting in severe casualties and big property damage. It is important to understand and predict the critical conditions for flashover in this kind of units. Based on a two-layer zone model, the probability of flashover is investigated by a nonlinear dynamical model. The temperature of the smoke layer is taken as the only state variable and the evolution equation is developed in the form of a simplified energy balance equation for the hot smoke layer. Flashover is considered to occur at bifurcation points. Then the influence of the floor dimensions and the radiation feedback coefficient on flashover conditions is examined. When the dimensions of the floor vary, the resulting changes in internal surface area or size of floor area both have effect on the flashover conditions. When the radiation feedback coefficient is of small value, there is no possibility of flashover.  With the increase of the radiation feedback coefficient, at first it significantly affects the conditions for flashover and then moderately when it reaches a larger value. It is proved that the flashover phenomenon can be demonstrated well by nonlinear dynamical system and it helps to understand the effect of various control parameters.

Read more... 

1 Introduction A series of new reduced-scale compartment fire experiments were conducted, which included local measurements of temperature and species composition. The measurements are unique to the compartment fire literature. By design, the experiments provided a comprehensive and quantitative assessment of major and minor carbonaceous gaseous species and soot at two locations in the upper layer of fire in a 2/5 scale International Organization for Standards (ISO) 9705 room. The enclosure defined in the international standard ISO 9705 “Full-scale room test for surface products” [1] is an important structure in which to conduct fire research. Many dozens of research projects and journal articles have focused on this enclosure and the standard describing its use. It is a common reference point for studies of many fire-related phenomena as well as fire modeling efforts.

Introduction

A series of new reduced-scale compartment fire experiments were conducted, which includedlocal measurements of temperature and species composition. The measurements are unique tothe compartment fire literature. By design, the experiments provided a comprehensive andquantitative assessment of major and minor carbonaceous gaseous species and soot at twolocations in the upper layer of fire in a 2/5 scale International Organization for Standards (ISO)9705 room. The enclosure defined in the international standard ISO 9705 “Full-scale room testfor surface products” [1] is an important structure in which to conduct fire research. Manydozens of research projects and journal articles have focused on this enclosure and the standarddescribing its use. It is a common reference point for studies of many fire-related phenomena aswell as fire modeling efforts.

Read more... 

From Out of the Abyss...

This week’s article from the past is titled Incendiary Fires Can Be Spotted and was written by Benjamin Horton, CPCU, who was President of the National Adjuster Traing School in Louisville, Kentucky..  It is taken from the Decembe 1968 Vol. XVI No.5 issue.

Incendiary Fires Can Be Spotted 

In the new issue of NFPA Journal®, President Jim Shannon said the Association will focus on the leading causes of home fires, including cooking. "We also need to continue to push hard for home fire sprinklers. That's still a large priority for NFPA, and we plan to work very aggressively in 2014 on our residential sprinkler initiative," he said.

Read more...

Expert Witness Testimony

Expert Witness Testimony Class

Presented by:

Steve Huchting - Richard Knapp - Wayne Tyson

In concert with each of our semi-annual training seminars, CCAI sponsors and presents the International Association of Arson Investigators Expert Witness Testimony Class. 

The IAAI Expert Witness Testimony Class has been developed to assist you, the fire investigator, in continuing your education, however it was primarily designed to help complete the requirements needed to obtain your Certified Fire Investigator credentials.

This class is essential for fire investigators who have the experience, education and training, but lack the two courtroom testimonies required to become a CFI.

The EWT was created to educate and train fire investigators in what is expected when preparing for, and actually having, the opportunity to testify in court.

This course is not easy.  Prior to coming to the class, each student is expected to complete several assignments; develop a Curriculum Vitae, complete a photo collage, a diagram and an action plan.

If you are serious about your career and future, make sure you call the office and get your name on the list. This class usually fills up six months to one year in advance.

Wayne Tyson, Richard Knapp and Steve Huchting do an excellent job in selecting the best qualified attorneys to assist in the delivery of the class materials.

So, if your goal is to become a CFI through either CCAI or IAAI and you do not have the necessary mandated two courtroom testimonies, sign up now.

Next class

Banner
Last month August 2016 Next month
S M T W T F S
week 31 1 2 3 4 5 6
week 32 7 8 9 10 11 12 13
week 33 14 15 16 17 18 19 20
week 34 21 22 23 24 25 26 27
week 35 28 29 30 31
California Certified Fire Investigator

 

 

 

Location

1279 North White Avenue 
Pomona, California 91768 
Phone:  (909) 865-5004
Fax (909) 865-5024 
8:00 am - 5:00 pm 
Monday - Friday

 

 

Disclaimer

This is the official website of the California Conference of Arson Investigators.

The information published on this website... more...